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This paper proposes the use of membrane reflectors for space telescopes having aper-
tures currently achievable using monolithic designs. It is shown, both analytically, and by
numerical optimization, that membrane reflectors including necessary support structure
may achieve comparable areal density to monolithic reflectors at a significantly reduced
cost. Design formulae for the membrane reflector support structure are derived and vali-
dated.

I. Introduction

There is a current desire and need within the astronomical community to increase the resolution of space-
based telescopes. This will enable the observation of small distant objects, for example extrasolar planets.
Two of the major advantages of space-based compared to ground-based telescopes are that their view is not
distorted by atmospheric effects, and that they may be designed to observe in the infrared portion of the
spectrum.

Improved telescope resolution is achieved by increasing the diameter, or aperture, of the primary reflector.
To make the launch of large aperture telescopes feasible it is necessary to decrease the weight required for a
given aperture. The reduction of the areal density – the ratio of the structural mass to the telescope area –
is one of the primary design drivers for new telescope concepts. For example the forthcoming James Webb
Space Telescope (JWST) has an areal density, based on the total launch mass, that is 13 times smaller than
the equivalently-calculated areal density for the Hubble Space Telescope (HST).1

As aperture size increases, it is necessary to consider how the telescope may be launched into space. The
fairing volume of the launcher provides a design constraint. If the desired aperture is larger than the available
space, it is necessary to design deployable structures that enable the telescope to be packed for launch and
then deployed into their operating condition when in orbit.2 The JWST for example will have a segmented
primary reflector which is twice-folded for launch.3 The design of deployable telescope mechanisms which
provide sufficient positional accuracy is a complex and challenging task.

Membrane reflectors have been proposed as a technology which offers the potential to provide large
apertures with very small areal densities. Many methods have been proposed for the deployment of large
aperture membrane reflectors including, for example, the use of inflatable boundary supports.4 One of
the major barriers to their use, however, is that there is a large of heritage technology on which to base
large aperture missions. The large inherent risk in considering such an untried technology for a large
aperture mission is a strong disincentive to their use. In addition, interferometry techniques may be used
to obtain large-aperture resolutions from constellations of small telescopes using current monolithic reflector
technologies.5 Although improvements in precision formation flying are necessary, the use of heritage reflector
technology means that the perceived risk is lower. The planned DARWIN mission, for example, will use
such an interferometry-based approach.6

The solution proposed in this paper to the problem of lack of heritage of membrane reflectors is to
recognise that, while the possibility of extremely large apertures is attractive, it is worthwhile to focus
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initially on small apertures comparable to what may be achieved currently using monolithic technologies.
This means that it is not necessary to consider sources of complexity, such as the incorporation of deployment.
The main advantage of focussing on small membrane reflectors is that they are highly competitive on cost
grounds. This is due both to the lower material cost, but also to the fact that they do not require the
high-precision grinding and polishing that is required for monolithic reflector surfaces.

Membrane reflectors could be used for small aperture space telescopes on the grounds that their low cost
offsets the risk inherent in the use of a new technology. If such missions were successful, they could form
the primary reflectors for interferometry missions for which large numbers of small reflectors are desirable.
Most importantly, at this stage, heritage would have been provided for larger aperture missions for which
the full potential of membrane reflectors would be realized.

Following this introduction, this paper considers the minimum structural requirements for a simple mem-
brane reflector concept and illustrates that they provide competitive performance at small diameters. The
chosen concept is first introduced and a reference design is chosen for illustrative purposes. An analytic
solution for the achievable areal density of this reflector design is then derived which, in addition, indicates
the key design metrics that must be considered. This analysis is then validated by means of a dual-objective
finite element-based optimization approach. Finally, the results are discussed and conclusions are drawn.

II. Membrane Reflector Concept

In order to assess the potential for small-diameter membrane reflectors it is necessary to specify the
required structural components in order to estimate the mass and hence the areal density. Polygonal mem-
branes having n sides, n > 6, are envisaged which are discretely attached to the support structure at each
vertex. Similar schemes have been proposed for solar sails.7 Two membranes are offset from each other, one
to provide the reflective surface, and one to act as an electrode. Curvature is applied to both membranes by
means of an electrostatic pressure caused by the membranes being oppositely charged.8,9

The minimum required support structure consists of two polygonal rings to resist the forces imparted at
the membrane vertices, and offset struts. These have two purposes: the first is to resist the loading caused
by the electrostatic pressure; the second is to provide adequate spacing between the two membranes so they
can assume the desired curvature. The polygonal rings and the two membranes prior to being subjected to
electrostatic pressure are shown for a representative 8-sided structure on the left hand side of Fig. 1. The
offset struts and the same membranes in their curved configuration are shown on the right hand side of the
figure.

polygonal ring

membrane

membrane

polygonal ring

o!set strut

membranes curved by electrostatic pressure

Figure 1. Membrane reflector including minimum required support structure concept

It must be emphasised that this is the minimum structure necessary to resist the loading imparted by
the membranes. It is not intended to be a specific design – physical realizations may well require additional
structure – but it is sufficient to be indicative of the likely achievable performance.

A. Reference Design

In addition to defining the reference geometry of the support structure, it is necessary to make material
selections and to define the desired vibration and buckling performance, in order to estimate the performance.
The actual choice is dependent on individual mission specifications, and the interaction with the remainder of
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the telescope system. The values chosen below are intended to be characteristic of a broad range of potential
missions.

The material chosen for the support structure is Silicon Carbide (SiC) which is used for the Herschel
telescope’s primary reflector structure.10 It is an ideal material for space telescopes due to its high specific
stiffness and high thermal stability. The Young’s modulus is Es = 120 GPa, and the density is ρs =
3160 kg/m2. The membrane material is taken to be Mylar, with Young’s modulus Es = 3.79 GPa, Poisson’s
ratio 0.3, and thickness 14 µm. The applied pre-strain is εm = 15× 10−6.

It is necessary to define a representative central deflection of the membranes. This is, of course, mission
specific, but an indicative value is 10% of the diameter i.e. δ = 0.1 chosen. For reference, for the Herschel
primary reflector, δ = 0.11. A 10% margin against buckling, λ = 1.1 and a minimum resonant frequency
fmin = 45 Hz is required. Again, the latter is the minimum specified resonant frequency of the Herschel
telescope.

III. Analytical Solution

A. Support Structure Force Determination

In order to determine the forces on the support structure due to the prestrain and applied curvature of
the membrane, we consider the regular n-sided polygonal membrane shown in Fig. 2a. The membrane has
diameter, based on the circumscribed circle, of D, and the angle α, which describes each triangular segment
of the polygon, is 2π/n. The edge length a is therefore expressed as

a = D sin
(α

2

)
(1)

The vertices of the polygon are numbered sequentially counter-clockwise from 1 to n. Vertex 1 is always
assumed to lie on the x-axis. The coordinates of the vertices are determined by

xi =
(

D

2

)
cos ((i− 1)α), i = 1, ..., n (2)

yi =
(

D

2

)
sin ((i− 1)α), i = 1, ..., n (3)

It is assumed that the polygonal membrane is connected to the support structure at each of its vertices
and that the forces resulting from the prestrain and applied curvature are equally distributed and have value
P . Vertical forces R, shown in Fig. 2b, are due only to the applied membrane curvature and are also assumed
to be equally distributed between the vertices. We may express resultant forces in the positive x-direction
and y-direction respectively as

Px = P
∑n

i=1 cos ((i− 1)α)|xi>0 = PC (4)
Py = P

∑n
i=1 sin ((i− 1)α)|yi>0 = PS (5)

in which |xi>0 indicates that the preceding function is only evaluated for xi > 0. The geometric functions C
and S are specified for convenience and compactness in the following analysis.

The support forces P consist of two components, one due to prestrain of the membrane, and one due
to the applied curvature. These two components are denoted Pε and Pκ and are determined separately and
then superposed.

1. Support Structure Force due to Membrane Prestrain

It is assumed that prior to being deformed to the required curvature, the membrane is prestrained by an
amount εm. This is necessary for two reasons: in real implementations, such a strain is useful to remove
material wrinkles and to impart stiffness prior to out-of-plane deformation; in finite element analyses of the
membrane, such as carried out in Sec. IV, the inclusion of prestrain provides geometric stiffness which aids
convergence. If we consider material at the center of the membrane, in order to be able to neglect edge
effects, we may express the assumed biaxial plane stress state as

σx ≈ Px/Dt (6)
σy ≈ Py/Dt (7)
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Figure 2. Membrane parametrization and variable definition

in which t is the thickness of the membrane, and Px and Py are as defined in Eq. 4. These biaxial stresses
may be represented by a single equivalent stress

σeq =
1

Dt
(P 2

x + P 2
y − PxPy)

1
2 =

Pε

Dt
(C + S − CS)

1
2 (8)

This equivalent stress may then be related to the applied prestrain by means of Hooke’s Law, allowing the
applied force due to the prestrain at each vertex of the polygonal membrane Pε to be written as

Pε =
1

(C + S − CS)
1
2

EmεmDt

(1− νm)
(9)

in which Em and νm are the Young’s modulus and Poisson’s ratio of the membrane material respectively.

2. Support Structure Force due to Membrane Curvature

In order to determine the support forces due to the membrane being deformed to the required curvature,
further notation, shown in Fig. 2b, needs to be introduced. The center point of the membrane is required to
deflect out-of-plane by an amount δD, for which δ is determined by particular mission requirements. This
curvature is caused by a uniformly-applied pressure p, which is equilibrated by the forces R described above.
To determine the forces Pκ, the membrane is cut along the y-axis which releases the membrane hoop-stresses
Nθ. The distance up from the most highly-deformed central point is denoted by the variable w∗.

The free body diagram in Eq. 4 is used to determine the forces Pκ by evaluating moment equilibrium
about the bottom left hand corner – the most highly-displaced point. This moment consists of the moment
due to the hoop stress in the membrane Mσ, the moment due to the applied pressure Mp, the moment due
to the vertical forces MR, and the moment due to the forces Pκ denoted MP . These are now evaluated in
turn.

The hoop stress Nθ is evaluated by using Hencky’s solution11 for a circular membrane with a constant
simply-supported boundary subject to uniform pressure loading, which is used to approximate the behaviour
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of the polygonal membranes. This approximation is necessitated by the fact that no analytical solution
for an n-sided polygonal membrane exists. Hencky’s solution as been adopted for the analysis of circular
membranes with continuously supported perimeters.12 The error introduced by this approximation, which
is to overestimate the structural stiffness, is reduced as n becomes larger, but must be acknowledged when
interpreting the results. We define a dimensionless radius of the membrane

r̂ =
r

(D/2)
(10)

Hencky’s solution then gives

Nθ =
Emt

4
q

2
3

∞∑
0

(2i + 1)b2ir̂
2i (11)

w∗ = δD −
(

D

2

)
q

1
3

∞∑
0

a2i(1− r̂2i+2) (12)

in which the dimensionless pressure

q =
pD

2Emt
(13)

and the constants ai and bi depend on the membrane Poisson’s ratio νm. For reference, values of ai and bi

for νm = 0.2, 0.3, 0.4 are provided in Tab. 1. The moment due to membrane hoop stress about the deflected
central point of the membrane may now be expressed by the integral

Mσ = 2
(

D

2

) ∫ 1

0

Nθw
∗dr̂ = ψ1pD3 (14)

in which the constant ψ1 is determined using a Hencky series truncated to three terms. Values of ψ1 are
provided in Tab. 1. The moment due to the applied pressure is readily determined. For consistency, the

ν a0 a2 a4 b0 b2 b4 ψ1 ψ2

0.2 0.5942 0.0623 0.0145 1.6827 -0.3531 -0.0494 0.0123 52.961
0.3 0.5799 0.0565 0.0123 1.7244 -0.3363 -0.0437 0.0131 58.612
0.4 0.5628 0.0502 0.0099 1.7769 -0.3167 -0.0376 0.0139 66.201

Table 1. Membrane parameters for ν = 0.2, 0.3, 0.4

membrane is once again approximated as circular. This moment may be shown to be

Mp =
1
12

pD3 (15)

If the force due to the applied pressure is equally distributed between the vertices, and once again consider
a circular membrane to be representative of an n-sided polygonal membrane for consistency, we may write

R =
pπD2

4n
(16)

and hence the moment due to these reaction forces as

MR =
n∑

i=1

Rxi|xi>0 =
πC
8n

pD3 (17)

Finally we may express the moment due to the support forces Pκ as

MP = δDPx = δDCPκ (18)

By combining the moments in Eqs. 14, 15, 17, and 18, ensuring equilibrium, and rearranging, we reach
the following expression for Pκ

Pκ =
(

ψ1 − 1
12

+
πC
8n

)(
1
δC

)
pD2 (19)

5 of 14

American Institute of Aeronautics and Astronautics



It only remains to determine an expression for the pressure required to achieve the desired central deflection.
This is achieved by solving Eq. 12 equal to zero for r̂ = 0 which gives

p =
ψ2δ

3Emt

D
(20)

in which the constant ψ2 is determined using a Hencky series truncated to three terms. Values of ψ2 are
provided in Tab. 1.

B. Support Structure Mass Estimates

In the previous section, expressions for the vertical reaction force R and the horizontal reaction force P
(being the sum of Pε and Pκ) , due to applied membrane prestrain and enforced curvature, were derived in
Eqs. 16, 9, and 19 respectively. These solutions may now be used to determine analytical expressions for the
minimum mass of the support structure required to achieve a desired stiffness. This stiffness is governed by
both vibration and buckling requirements. These are expressed as a load factor λ, which is the margin of
safety against buckling, and a minimum allowable frequency fmin.

1. Buckling-limited Mass Determination

Two potential buckling modes are considered. These are: buckling of an individual member of the polygonal
ring component of the support structure under the action of force P ; buckling of an individual member of
the offset strut component of the support structure under the action of force R. The support structure is
assumed to behave as a linear elastic material with Young’s modulus Es and density ρs. A section ABCD
of the membrane support structure including the forces applied by the top and bottom membrane is shown
in Fig. 3.

P

P

P

P

R

R

R

R

A

B

D

C

α

Figure 3. Support structure forces due to membrane prestrain and curvature on a single side consisting of
two polygonal ring members and two offset struts

We first consider the buckling of the support structure under the action of forces P . It is sufficient to
focus on a single member AB to determine the behaviour of the complete polygonal ring. Member AB will
be subjected to axial loads at both ends equal to the component of P along the member. This means that
we may express the required critical load of the member as

Pcrit = λP sin
(α

2

)
(21)
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It is now necessary to consider the end restraint of member AB. At first glance it appears that both ends may
best be approximated as built-in. It must be recalled, however, that when member AB buckles, the same
critical load is present in all the other members forming the polygonal ring. If all the members have buckled,
the ends of member AB, and similarly the ends of all the other ring members must rotate to maintain
compatibility. For this reason, the critical load of member AB is determined assuming pinned ends to allow
this rotation to occur.

If all the polygonal ring members are taken to have a circular cross-section with diameter drb for simplicity,
It may be shown by equating Eq. 21 with Euler’s well-known buckling formula that the required diameter
to ensure adequate buckling resistance of the polygonal ring may be obtained from

d2
rb = 8D

√
λP sin3 (α/2)

π3Es
(22)

It is now possible to evaluate the volume and hence the mass mrb of the polygonal ring structure to provide
adequate resistance against buckling as

mrb = 2


2πD

√
λP sin3 (α/2)

π3Es


 nD sin

(α

2

)
ρs (23)

The required mass for the offset strut members of the support structure are determined in a similar way.
In this case, the required critical load for each strut is λR, and the end fixation is determined to be both ends
built-in on account of the restraint provided by the polygonal ring members. Again, we assume a circular
cross-section for the offset struts for simplicity. The necessary strut diameter to ensure adequate resistance
against buckling dsb may be determined from

d2
sb =

√
4λψ2δ5tD3

π2n

(
Em

Es

)
(24)

and hence the mass msb of the offset struts to provide adequate resistance against buckling is

msb =

(
π

4

√
4λψ2δ5tD3

π2n

(
Em

Es

))
n(2δ)Dρs (25)

2. Frequency-limited Mass Determination

In order to determine the necessary support structural mass to achieve a design minimum frequency, it is
necessary to consider the likely vibration modes of the structure. In a similar fashion to determining the
required mass to resist buckling, the polygonal ring component and the offset strut component of the support
structure are considered separately. We consider the polygonal ring first.

The polygonal ring is likely to resonate in one of two modes: an in-plane ‘breathing’ mode; and individual
resonance of a single member such as member AB in Fig. 3. Which of these is the dominant resonant mode
is determined by the geometry of a particular design. For this reason, the minimum mass calculation is
based on both modes. The breathing mode for a 10-sided polygonal structure is shown in Fig. 4a. This
mode corresponds to the polygon extending along one axis whilst simultaneously contracting along the other
axis. An analytical solution for the resonant frequency of such a polygonal structure is not available. For
this reason the structure is approximated as a circular ring, for which an analytical solution exists.13 The
breathing mode for a circular ring structure is shown in Fig. 4b. The circle is chosen to be the circle generated
by the vertices of the undeformed polygon. This approximation is increasingly valid as the number of sides
of the polygon n is increased.

Making this approximation, and assuming a circular member cross-section for simplicity, allows us to
obtain the required diameter of the ring component of the support structure to provide a minimum breathing
mode resonant frequency drf1 from

d2
rf1 = 5.485f2

minD4

(
ρs

Es

)
(26)
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(a) (b)

Figure 4. The breathing mode of a representative 10-sided polygonal support structure and the circular
approximation to this structure

An analytical solution for the first resonant frequency if vibration of an individual member occurs exists13

and allows us to obtain the required diameter of the ring component of the support structure to provide a
minimum individual member vibration resonant frequency drf2 from

d2
rf2 = 28.169f2

minD4 sin4 α

(
ρs

Es

)
(27)

The required ring member diameter to provide the required resonant frequency drf is therefore the maximum
of Eqs. 26 and 27. The minimum required mass is therefore expressed as

mrf = 2
(

7.042πf2
minD4 sin4 α

(
ρs

Es

))
nD sin

(α

2

)
ρs (28)

The calculation for the minimum required mass of the offset strut components of the membrane support
structure is carried out in a similar fashion. The minimum diameter to ensure sufficient vibrational stiffness
dsf is obtained, as for Eq. 27, from

d2
sf = 28.169f2

min(2δ)4D4

(
ρs

Es

)
(29)

The minimum required mass of the offset struts is therefore

msf =
(

7.042πf2
min(2δ)4D4

(
ρs

Es

))
n(2δ)Dρs (30)

It is now possible to estimate the minimum support structure mass mmin for any given design geometry
and material selection, to provide a safety factor against buckling λ, and a minimum resonant frequency
fmin from Eqs. 23, 25, 28, and 30 as

mmin =
∑

(max(mrb, msb),max(mrf ,msf )) (31)

The mass of the membrane is negligible in comparison to the mass of the support structure, and is therefore
not included.

C. Key Design Metrics

The expressions determined in the previous section enable estimates for the achievable areal density of
membrane reflectors to be determined. In the course of their derivation, however, additional relationships
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are made clear. This are of particular use to determine which material properties and constraints are the
predominant design drivers. Two metrics that are found to be crucial are the relative stiffness of the support
and the membrane material (Es/Em), and the specific stiffness of the support structure (Es/ρs). The best
results in terms of areal density are achieved when these metrics are maximized. If the relative stiffness
is increased, so too the buckling resistance. If the specific stiffness is increased, so too the first resonant
frequency.

It is possible to to determine additional proportionalities inherent in the design. From Eq. 31 it may
be seen that the frequency-limited mass is proportional to D5 and f2

min, and the buckling-limited mass is
proportional to D

5
2 and λ

1
2 . From this it may be inferred that for all except very small diameters, it is the

minimum resonant frequency requirements that will drive the design of membrane reflectors.

D. Representative Design Performance

Having derived equations to determine the required structural mass for a membrane reflector, it is of interest
to determine the performance for a representative design and to compare the results with existing monolithic
reflector designs. The reference design that is considered is described in Sec. A.

The achievable areal density for polygonal membrane reflectors with a simple support structure consisting
of two n-sided polygonal rings and n offset struts is evaluated using the required mass determined according
to Eq. 31. This is divided by the effective aperture of a polygonal membrane, which is the circle which
inscribes the polygon. Areal densities were evaluated for n = 6, 8, 10, 12, and D = 0.5 − 3.5 m and are
plotted in Fig. 5. Areal densities – based on the monolithic primary reflector mass – for the 0.7 m Akari
Telescope,14 the 2.4 m Hubble Space Telescope, and the 3.5 m Herschel Telescope are also plotted.10 These
are 28 kg/m2, 180 kg/m2, and 22 kg/m2 respectively, and are evaluated considering only the mass of the
primary reflector to provide a legitimate comparison.
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Figure 5. Achievable membrane reflector areal density prediction, for representative material properties and
design parameters. Current monolithic reflector performances are included for comparison

It can be seen that the effect of increasing the number of sides of the polygonal membrane is to increase
the achievable areal density. There is minimal improvement, however, above n = 10. It is also noted that
the areal density that can be achieved by the simple membrane telescopes compares favorably to both Akari
and HST. The proportionality of the areal density to D3, however, means that the properties of the Herschel
telescope may not be achieved without additional control. For this reason, it makes sense to focus preliminary
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membrane reflector missions at smaller diameters. Below D ≈ 2.5 m, membrane reflectors offer a simple
cost-effective alternative to monolithic designs.

It must be emphasised that the areal densities plotted in Fig. 5 are not intended to be exact results,
but are indicative of what may be achieved. There are sources of error in the analysis, in particular the
assumption that the deflection of polygonal membranes may be modelled by circular membranes having the
same diameter. In order to assess the validity of the analytical formulae derived above, and also to provide
further insight into the behavior of the membrane reflectors, further work is needed . In the following section,
optimal masses of structures having D = 2.5 m, which provide sufficient buckling and vibration resistance,
are generated by coupling genetic optimization algorithms with nonlinear finite element analysis.

IV. Numerical Solution and Optimization

A. Optimization Strategy

For a given n-sided polygonal membrane of diameter 2.5 m, it is desired to determine the structure with
minimal mass that provides a buckling factor λ = 1.1 and and minimum frequency fmin = 45 Hz. The
out-of-plane deflection of the center of the membrane is required to be 10% of the diameter, i.e. δ = 0.1.
We do not know a priori what pressure is required to achieve the required central deflection. The design
problem may therefore be specified as the dual-objective optimization

min (disp. error) difference between actual and desired shape change
min (mass) mass of the support structure
s.t.
λ ≥ 1.1 buckling constraint
fmin ≥ 45 Hz frequency constraint

(32)

in which the design parameters are the applied membrane pressure, and the diameters of the polygonal ring
dr and offset struts ds.

This problem could be solved in a single process, but it is computationally more efficient to subdivide
it into two single objective optimization problems. The first optimization focusses on the membrane, which
enables the required pressure and support structure loads to be determined. The second optimization applies
the loadings determined in the first optimization to the support structure and evaluates the required member
diameters.

The first optimization is expressed as

min (disp. error)
s.t.
p < ph pressure constraint
fmin ≥ 45 Hz membrane frequency constraint

(33)

in which ph is the required pressure determined analytically using Hencky’s solution to achieve the desired
central deflection of a circular membrane with equivalent diameter. The pressure constraint is to assist
convergence of the problem – it is not a strict requirement of the analysis. It transpires that the frequency
constraint is not active for the example diameter considered. The second optimization is then expressed as

min (support structure mass)
s.t.
λ ≥ 1.1
fmin ≥ 45 Hz support structure frequency constraint

(34)

for which the support structure is subjected to the applied loads determined in the first optimization. The
variables are the diameter of the polygonal ring component of the support structure dr, and the diameter of
the offset strut components ds. Both are permitted to vary continuously between 10 mm and 300 mm.

The primary advantage of decoupling the optimization problem in this way is that the solution of Eq. 33
requires computationally-expensive nonlinear analysis to determine the displacement of a membrane due to

10 of 14

American Institute of Aeronautics and Astronautics



an applied pressure. The optimization may be carried out with relatively few iterations, however, using
a gradient-based algorithm. The solution of the optimization problem in Eq. 34 is not well suited to a
gradient-based algorithm, as the determination of the buckling loads and resonant frequencies requires two
eigenvalue analyses. A genetic algorithm requiring a large number of iterations is therefore preferred. This
is not computationally expensive, however, as only linear analyses need to be carried out to determine the
properties of the support structure.

The optimization algorithms are now described in greater detail. The gradient-based algorithm used is
the Globally-Convergent Method. Sensitivities are based on a 0.01% perturbation of the variables, and the
convergence tolerance is specified to be 0.01%. The genetic algorithm is based on binary coded individuals.
A population consists of 20 individuals. Each individual generation has a 90% probability of single-point
cross-over, and a 1% mutation probability. In addition, to ensue a sufficiently diverse population and to
explore fully the design space, a rebirth strategy is used in which 50% of the population is replaced every 10
iterations. The fitness of individuals is assessed with a tournament selector method. As for the gradient-based
algorithm, a convergence tolerance of 0.01% is specified.

1. Required Membrane Mesh Density

Before carrying out the optimization specified in Eq. 33 it is necessary to ensure that the membrane is
modelled with sufficient accuracy whilst at the same time limiting the number of degrees of freedom to ensure
that the optimization is as time-efficient as possible. In order to determine the best model configuration, an
investigation was carried out based on a circular membrane – to enable comparison with Hencky’s analytical
solution – for various combinations of element type and mesh density. Only triangular membrane elements
were considered with either zero or one mid-side node.

The finite element analysis first consists of the application of a biaxial prestrain εm = 15×10−6 to impart
geometric stiffness to the membrane. The applied pressure is then increased linearly up to the required value
in a dynamic analysis. The Hilber-Hughes-Tayor solution method for the equations of motion is adopted
with maximum damping factor α = 0.33. The reason for the use of a dynamic analysis is that it provides
unconditional stability and enables the solution to converge when the membrane has low curvature and low
stiffness. When all the pressure is applied, the level is maintained and a single quasi-static analysis step is
carried out to determine the final static configuration of the membrane.

Using this approach, the circular membrane mesh that gave the best results with fewest degrees of
freedom was found to use second-order triangular elements with 30 elements around the membrane diameter.
Consequently the same elements and a similar mesh density was used to analyse the polygonal membranes.

B. Optimal Support Structures

Using the optimization strategy described above, optimal support structure masses were determined for
polygonal membranes with a diameter, as described by the vertices, of 2.5 m, and number of sides n =
6, 8, 10, 12, 14. In all cases considered, a converged solution to within 0.01% was obtained for both
gradient-based and GA portions of the optimization. The achievable areal density and required number of
optimization iterations are provided in Tab. 2. Areal densities evaluated using the analytical method derived
in Sec. III are included in the table for comparison. The areal densities for both optimized and analytical
solutions are plotted in Fig. 6.

Iterations Areal Density (kg/m2)
n Grad.-based GA Optimized Analytical

6 9 162 110 334
8 7 542 119 133
10 7 762 128 99
12 5 182 112 97
14 5 982 122 95

Table 2. Optimal areal densities and the required number of optimization iterations
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Figure 6. Areal density prediction, comparing optimal numerical and analytical solutions for 2.5 m diameter
polygonal membranes

The pressure p, the diameters of the polygonal ring and offset struts dr and ds,and the required mass
determined by the optimization are provided in Tab. 3 and are compared to the analytically determined
values. The minimum frequency determined for the optimal solution is also provided for comparison in
Tab. 4 – fmin = 45 Hz for all the analytical solutions.

n p (Pa) dr (mm) ds (mm) m (kg) ωmin (Hz)

6 350 101 58 405 46.8
8 455 111 55 500 48.8
10 542 119 46 571 51.2
12 595 110 57 517 45.5
14 639 119 35 570 46.4

Table 3. Optimized applied pressure and support structure variables

V. Discussion

The results listed in Tab. 2 and plotted in Fig. 6 show that there is an excellent qualitative and reasonable
quantitative relationship between the analytically-determined and optimized areal densities of the 2.5 m
membrane reflector. The exception to this is for 6-sided membranes in which the analytical prediction
is a substantial overestimate. The reason for this discrepancy is that Hencky’s solution for the required
membrane pressure is less valid for polygonal membranes with few vertices. The approximation is improved
as the number of vertices n increases. It is noted that the support structure design for D = 2.5 m is controlled
by the frequency requirements.

For n ≥ 8, the derived analytical solution is a useful predictive tool for the achievable areal densities
of membrane reflectors. It also provides valuable information concerning the relationships between the
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n p (Pa) dr (mm) ds (mm) m (kg)

6 1244 182 9.7 1229
8 1244 121 9.7 558
10 1244 107 9.7 439
12 1244 107 9.7 441
14 1244 107 9.7 443

Table 4. Analytically determined applied pressure and support structure variables

variables and the key design drivers. It can be seen, however, from the results in Tables. 3 and 4, that
the analytical expressions in their current form do not adequately predict the dimensions of the individual
members of the offset strut components of the support structure. As mentioned above, the use of the pressure
determined using Hencky’s solution for a circular is an overestimate for polygonal membranes. In addition,
the approximation of the offset struts as fully restrained at both ends for the frequency analysis, clearly
results in them being too stiff. Quantitative predictions with the analytical expressions could be improved,
if required, by the addition of correctional factors to reduce the pressure and the offset strut end fixity.

The most important results are observed in Fig. 5. It may be seen that membrane reflectors may
achieve comparable areal densities to the HST and Akari Telescope. This uses a simple support structure,
and has no requirement for active control to to the specification of a sufficiently high minimum frequency.
This demonstrates that relatively cheap membrane reflectors can provide similar performance to monolithic
designs for diameters less than 2.5 m and consequently are well worth consideration at this scale in order to
provide heritage for large-aperture missions that could not be achieved using current technologies.

VI. Conclusions

This paper has derived analytical expressions which enable the achievable areal density of membrane
reflectors to be predicted and compared to existing monolithic designs. These expressions were validated
by comparison to optimized finite element results for a diameter of 2.5 m, and found to offer a reasonable
prediction of areal density, particularly as the number of sides of the polygonal membrane is increased.
If required, the expressions may be simply altered by the incorporation of additional factors to provide
accurate predictions not only of the areal density, but also the support structure dimensions. A corollary
of the derivation of the analytical expressions was the determination of metrics that govern the design, in
particular that the dominant frequency-dependent mass is proportional to D

5
2 .

The primary conclusion of this work is that it is worthwhile to develop relatively small diameter membrane
reflector telescopes before focussing on very large aperture missions. Although small apertures may be
achieved using monolithic reflector technology, they are more expensive that equivalent membrane-based
designs. The most important outcome, however, would be the development of heritage technology for future
large aperture missions.

In order to achieve membrane reflectors of any diameter, future work is required to ensure that an
adequate optical surface may be achieved. In particular, this requires further understanding of the curvature
that arises from electrostatic pressure and the degree of control this provides. Also membrane wrinkles at
the discrete supports need to be predicted and eliminated. It has been seen that the structural performance
of polygonal membrane reflectors is not a strong function of the number of sides. This therefore provides
freedom to vary the number of sides to achieve the best possible reduction of wrinkling.
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